1) a) 700000
c) $\mathbf{9 0 0 0 0 0 0}$
e) 60
b) 40
d) $\mathbf{3 0 0 0}$
f) 0.5

2) $675 \div \mathbf{~} \mathbf{1 0 0}=6.75$
65000

846 \square
$784093 \div \mathbf{~} \mathbf{1 0}=78409.3$
3) Yes, both calculations total 986.4 so they give the same answer.
4) Accept any fully-explained correct answer. A possible answer could be $507.9 \times 100=50790$
 whereas $\mathbf{5 0 7 . 9}$ is the total given by the other two calculations.
5) Many possible answers, for example:
a) 1010100 and 10101
b) $\mathbf{3 0 0 0} \mathbf{0 0 0}$ and $\mathbf{3 0 0 0}$
6) Many possible answers, for example:
$1000 \times 420=420000$
$2000 \times 210=420000$
The number being multiplied by 1000 needs to be a 3-digit multiple of 20. The matching number being multiplied by $\mathbf{2 0 0 0}$ will he half the number in the first calculation.
7) Many possible answers, for example:
$5314000 \div 1000>531 \times 10$
$1354 \div 1000>10.34 \div 10$
8) a) There are two ways: You could work out $220 \times 100=22000$ and then multiply the answer by 5 or you could multiply 220 by 1000 and then half your answer.
b) $\mathbf{1 1 0} 000$
9) a) 700 made 1000 times the size is \qquad
b) 0.4 made 100 times the size is \qquad
c) 900000 made ten times the size is \qquad
d) 3000000 made one thousandth times the size is \qquad
e) 6000 made one hundredth times the size is \qquad
f) 5 made one tenth times the size is \qquad
10) Use each of these terms once to complete the calculations.

$\times 10$	$\times 100$	$\times 1000$
$\div 10$	$\div 100$	$\div 1000$

675	$=6.75$	5693	$=5693000$	932	$=9320$
784093	$=78409.3$	65000	$=65$	846	$=84600$

1) Do these calculations give the same answer? Explain your reasoning.
$98640 \div 100$
98.64×10
2) Which of these calculations would you say is the odd one out? Explain your reasoning.

50.79×10	
50.79×10	-
$507900 \div 1000$	

3) Meera uses 6 counters to represent the number 2220000 on a place value chart.

M	HTh	TTh	Th	H	T	0
$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$				

a) Use the six counters to make two new numbers that are one hundredth times the size of each other.
\qquad
b) Use the six counters to make two new numbers that are 1000 times the size of each other.
\qquad

1) Both these calculations give the same answer. Find five possible solutions to this problem. Explain any patterns you see in your answers.
1000×0
2000×1
\qquad
\qquad
\qquad
\qquad
\qquad
2) Use the digit cards below to make the statement true. You can use each digit cards more than once.

Can you find more than one solution?

$$
? \div 1000>? \times 10
$$

\qquad
\qquad
\qquad
\qquad
\qquad
3) a) The school office received 220 boxes of glue sticks. Each box holds 500 glue sticks.

What scaling by powers of 10 fact could you use to help you calculate how many glue sticks there are in total?
\qquad
b) Use this fact to calculate the answer.

1) a) 700 made 1000 times the size is...
b) 0.4 made 100 times the size is...
c) 900000 made ten times the size is...
d) 3000000 made one thousandth times the size is...
e) 6000 made one hundredth times the size is...
f) 5 made one tenth times the size is...
2) Use each of these terms once to complete the calculations.

$\times 10$	$\times 100$	$\times 1000$
$\div 10$	$\div 100$	$\div 1000$

$675 \square=6.75$

932

1) a) 700 made 1000 times the size is...
b) 0.4 made 100 times the size is...
c) 900000 made ten times the size is...
d) 3000000 made one thousandth times the size is...
e) 6000 made one hundredth times the size is...
f) 5 made one tenth times the size is...
2) Use each of these terms once to complete the calculations.

$\times 10$	$\times 100$	$\times 1000$
$\div 10$	$\div 100$	$\div 1000$

1) Do these calculations give the same answer? Explain your reasoning.
$98640 \div 100$
```
98.64 × 10
```

2) Which of these calculations would you say is the odd one out? Explain your reasoning.

507.9×100
50.79×10
$507900 \div 1000$

3) Meera uses 6 counters to represent the number 2220000 on a place value chart.

M	HTh	TTh	Th	H	T	0
$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$				

a) Use the six counters to make two new numbers that are one hundredth times the size of each other.
b) Use the six counters to make two new numbers that are 1000 times the size of each other.

1) Both these calculations give the same answer. Find five possible solutions to this problem. Explain any patterns you
 see in your answers.

2) Use the digit cards below to make the statement true. You can use each digit cards more than once.
Can you find more than one solution?
$? \div 1000>? \times 10$

3) a) The school office received 220 boxes of glue sticks. Each box holds 500 glue sticks. What scaling by powers of 10 fact could you use to help you calculate how many glue sticks there are in total?
b) Use this fact to calculate the answer.
4) Do these calculations give the same answer? Explain your reasoning.

5) Which of these calculations would you say is the odd one out? Explain your reasoning.

6) Meera uses 6 counters to represent the number 2220000 on a place value chart.

M	$H T h$	TTh	Th	H	T	0
$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$				

a) Use the six counters to make two new numbers that are one hundredth times the size of each other.
b) Use the six counters to make two new numbers that are 1000 times the size of each other.

1) Both these calculations give the same answer. Find five possible solutions to this problem. Explain any patterns you
 see in your answers.

2) Use the digit cards below to make the statement true. You can use each digit cards more than once. Can you find more than one solution?
$? \div 1000>? \times 10$

3
3) a) The school office received 220 boxes of glue sticks. Each box holds 500 glue sticks. What scaling by powers of 10 fact could you use to help you calculate how many glue sticks there are in total?
b) Use this fact to calculate the answer.

Gattegno Chart

10000000	20000000	30000000	40000000	50000000	60000000	70000000	80000000	90000000
1000000	2000000	3000000	4000000	5000000	6000000	7000000	8000000	9000000
100000	200000	300000	400000	500000	600000	700000	800000	900000
10000	20000	30000	40000	50000	60000	70000	80000	90000
1000	2000	3000	4000	5000	6000	7000	8000	9000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

Scaling by 10, 100 and 1000 Roll and Read

To understand the relationship between powers of 10 from 1 hundredth to 10 million.

Instructions

- On your turn, roll the dice.
- Choose one of the calculations on the row that matches the number you rolled.
- Complete the stem sentences for the number.
- If your partner thinks you are correct, colour and claim that representation.
- Claim four in a line to win.

\bullet	23×10	52×100	90×1000	$45 \div 10$	$36 \div 100$	$57000 \div 1000$	
\bullet	420×10	100×100	610×1000	$780 \div 10$	$170 \div 100$	$290 \div 1000$	
\bullet •	8000×10	7800×100	2500×1000	$1100 \div 10$	$9300 \div 100$	$7000 \div 1000$	
0	31000×10	43000×100	82000×100	$64000 \div 10$	$49000 \div 100$	$81000 \div 1000$	1600 is 1000 times the
	950000×10	890000×10	530000×10	$2000000 \div 10$	$7300000 \div 100$	$3800000 \div 1000$	
88	6.9×10	3.4×100	9.4×1000	$50.1 \div 10$	$207 \div 100$	$1600 \div 1000$	

